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The Direct Solution Method (DSM, Geller and Ohminato, 1994) is a

Galerkin weak form method for solving the elastic equation of

motion in the frequency domain
(
ω2T−H

)
c = −g,

where ω is the frequency, T is the mass (kinetic energy) matrix, H is

the stiffness (potential energy) matrix, c is the vector of expansion

coefficients for the trial functions, and g is the force vector.
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The matrix and vector elements are as follows:

Tmn =

�

V
(φ(m)

i )∗ρφ(n)
i dV

Hmn =

�
V
(φ(m)

i, j )∗Ci jkl φ(n)
k,l dV

gm =
�

V
(φ(m)

i )∗ fi dV,

where φi
(m) is the i-component of the m-th trial function, “, j”

denotes spatial differentiation with respect to the j-coordinate, ρ is
the density, Ci jkl is the elastic modulus, (We assume anelastic
attenuation is included in the elastic moduli.) fi is the external body
force, and ∗ denotes complex conjugation.
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The summation convention applies to subscripts corresponding to

physical (x, y or z)-coordinates, but not to indices corresponding to

abstract vector spaces, such as those denoting trial functions. The

displacement is represented as a linear combination of the trial

functions:

ui = ∑
n

cnφ(n)
i .

The operators defined above will not in general be exact. We

formally denote the exact operators by T(0) and H(0), the exact

solution by c(0), the error of the numerical operators by δT and δH,

and the error of the numerical solution by δc,
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T = T(0) + δT

H = H(0) + δH

c = c(0) + δc.

In order to make a formal error estimate we will now represent the

exact solution, numerical solution, and error of the numerical

solution by eigenfunction expansions. It is not necessary to know

the actual numerical values of the eigenvalues and eigenvectors;

also, the following results are independent of the basis.
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The normal modes satisfy
(

ω2
mT(0) −H(0)

)
cm = 0,

where ωm is the eigenfrequency of the m-th mode, and cm is the

eigenvector. We assume that the modes are orthonormalized so that

cm
∗ H(0)cn = ω2

mcm
∗ T(0)cn = ω2

mδmn,

where δmn is a Kronecker-delta.
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The exact equation of motion can be formally written as follows:
(

ω2T(0) −H(0)
)

c(0) = −g.

The error of the solutions, δc, can be estimated using the first order

Born approximation:
(

ω2T(0) −H(0)
)

δc = −(
ω2 δT − δH

)
c(0).
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We represent the exact solution in terms of an eigenfunction
expansion:

c(0) = ∑
m

d(0)
m cm.

The expansion coefficient of the m-th mode is given by

d(0)
m = −gm/(ω2 −ω2

m),

where

gm = cm
∗g.

The denominator of the r.h.s. will be small, and thus d(0)
m will be

large, when ω is close to ωm but can be neglected elsewhere.
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We also represent the error of the numerical solution in terms of an

eigenfunction expansion:

δc = ∑
m

δdmcm.

The expansion coefficient of the m-th mode is given by

δdm = − ∑n(ω2δTmn −δHmn)d
(0)
n

(ω2 −ω2
m)

.
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By the same argument used above, the m-component of the error

(i.e., δdm) will be large only when ω is close to ωm. But in the

vicinity of ω= ωm only d(0)
m will be large; the expansion coefficients

of all the other modes will be negligible. Therefore in the vicinity of

ω= ωm the n �= m terms in the summation can be neglected. The

expansion coefficient of the m-th mode for the numerical error is

therefore approximately given by

δdm = −(ω2δTmm −δHmm)d(0)
m

(ω2 −ω2
m)

.
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The relative error of the numerical solution in the vicinity of ω= ωm

can thus be approximated by

δdm

d(0)
m

= − (ω2δTmm −δHmm)
(ω2 −ω2

m)
= − δTmm(ω2 −δHmm/δTmm)

(ω2 −ω2
m)

.

Note that in the cases of interest ω will be real, but ωm will include a

small imaginary part due to anelastic attenuation. Therefore, the

denominators in the above will become small as ω→ ωm, but will

never exactly equal zero.
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The above equation shows that in general the relative error will

greatly increase as ω approaches ωm. However, if the numerator is

also proportional to (ω2 −ω2
m) the relative error will not worsen

appreciably as ω→ ωm. Such proportionality can be achieved if and

only if the errors of the numerical operators approximately satisfy

ω2
mδTmm −δHmm = 0

for every mode.
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The above equation shows that the relative error of the numerical

solution obtained using modified operators that approximately

satisfy the criterion is approximately given by:
∣∣∣∣∣
δdm

d(0)
m

∣∣∣∣∣ = |δTmm| ,

even as ω→ ωm. On the other hand, if the operators do not

approximately satisfy the criterion the relative error will worsen

drastically as ω→ ωm.
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As shown above, the spatial pattern of the error of the numerical

solution in the vicinity of ω= ωm is given by the eigenfunction of

the m-th mode. A large numerical error of the operators near a free

surface or internal discontinuity does not mean that the error of the

numerical solution will be unusually large there; it simply means

that the scalar quantity

ω2δTmm −δHmm

ω2 −ω2
m

,

which, as shown by the criterion, is the factor controlling the relative

error of the expansion coefficient of the m-th mode in the vicinity of

ω= ωm, will be somewhat larger.
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This means that the relative error of the numerical solution will be

uniformly larger everywhere in the medium, rather than that the

error will be especially large at some particular points. Thus we do

not have to be especially concerned with reducing the error of the

operators at particular points, even points where we particularly

desire accurate solutions.
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Near any frequency ω where the solution is large, there will be a

dominant mode, whose frequency is ωm and whose eigenfunction is

cm.

To first order, the exact solution, numerical solution, and the
error of the numerical solution will all be proportional to cm.

Therefore an operator error at the boundary will cause a

contribution to the solution error which is (to lowest order)

proportional to cm.

The above discussion is conducted in the frequency domain, but

applies equally to the time domain.


